Abstract

Mutations were made in the activation loop tyrosine of the kinase domain of the oncoprotein v-Fps to assess the role of autophosphorylation in catalysis. Three mutant proteins, Y1073E, Y1073Q, and Y1073F, were expressed and purified as fusion proteins of glutathione-S-transferase from Escherichia coli and their catalytic properties were evaluated. Y1073E, Y1073Q, and Y1073F have k(cat) values that are reduced by 5-, 35-, and 40-fold relative to the wild-type enzyme, respectively. For all mutant enzymes, the Km values for ATP and a peptide substrate, EAEIYEAIE, are changed by 0.4-2-fold compared to the wild-type enzyme. The slopes for the plots of relative turnover versus solvent viscosity [(k(cat))eta] are 0.71 +/- 0.08, 0.10 +/- 0.06, and approximately 0 for wild type, Y1073Q, and Y1073E, respectively. These results imply that the phosphoryl transfer rate constant is reduced by 19- and 130-fold for Y1073E and Y1073Q compared to the wild-type enzyme. The dissociation constant of the substrate peptide is 1.5-2.5-fold lower for the mutants compared to wild type. The inhibition constant for EAEIFEAIE, a competitive inhibitor, is unaffected for Y1073E and raised 3-fold for Y1073Q compared to wild type. Y1073E and Y1073Q are strongly activated by free magnesium to the same extent and the apparent affinity constant for the metal is similar to that for the wild-type enzyme. The data indicate that the major role of autophosphorylation in the tyrosine kinase domain of v-Fps is to increase the rate of phosphoryl transfer without greatly affecting active-site accessibility or the local environment of the activating metal. Finally, the similar rate enhancements for phosphoryl transfer in v-Fps compared to protein kinase A [Adams et al. (1995) Biochemistry 34, 2447-2454] upon autophosphorylation suggest a conserved mechanism for communication between the activation loop and the catalytic residues of these two enzymes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.