Abstract
Cataract-microcornea syndrome (CCMC) is an autosomal dominant inherited disease characterized by the association of congenital cataract and microcornea without any other systemic anomaly or dysmorphism. Although mutations of several genes have been shown to cause dominant CCMC, in many patients the causative gene has not yet been identified. Our aim was to identify the disease-associated gene in Chinese patients with CCMC. The CCMC patients from two unrelated Chinese families and 26 sporadic patients were enrolled. All the patients were screened by Sanger sequencing with no identified mutations. Genetic variations were screened by whole-exome sequencing and then validated using Sanger sequencing. By sequencing the whole exome of three patients in a Chinese four-generation dominant CCMC family (Family A), three heterozygous missense mutation (c.115C>G, c.277G>A, and c.4393G>A) were identified in ATP-binding cassette protein A3 (ABCA3). At highly conserved positions, changes (c.115C>G and c.4393G>A) were predicted to have functional impacts and completely cosegregated with the phenotype. We further confirmed our finding by identifying another heterozygous missense mutation, c.2408C>T, in ABCA3 in an additional dominant CCMC family (Family B), which also cosegregated with the phenotype. Moreover, four heterozygous mutations, two missense mutations (c.4253A>T, c.2069A>T) and two splice site mutations (c.4053+2T>C, c.2765-1G>T) were identified from the sporadic patients. The ABCA3 protein was expressed in human lens capsule, choroid-retinal pigment epithelium and retinal pigment epithelial cells. Mutations in the human ABCA3 gene were associated with lethal respiratory distress. Our study showed, for the first time to our knowledge, that mutations in ABCA3 were associated with CCMC, warranting further investigations on the pathogenesis of this disorder.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.