Abstract

IntroductionTuberculosis remains the leading causes of death worldwide with frequencies of mutations in rifampicin and isoniazid resistant Mycobacterium tuberculosis isolates varying according to geographical location. There is limited information in Zimbabwe on specific antibiotic resistance gene mutation patterns in MTB and hence, increased rate of discordant results and mortality due to inappropriate antibiotic prescriptions. The rpoB and katG genes molecular markers are used for detecting rifampicin and isoniazid resistance respectively. Some mutations within these gene sequences are associated with drug resistance as they directly alter gene function. The objectives of this research was to determine the drug resistance profiles in M. tuberculosis isolates that are phenotypically resistant but not detected by the GeneXpert and MTBDRplus kit and also to detect mutations in the rpoB and katG genes which are not detected by the Hain Genotype MTBDRplus kit and GeneXpert diagnosis.MethodsPCR was used for the amplification of the rpoB and katG genes from MTB isolates collected from human clinical samples between 2008 and 2015. The genes were sequenced and compared to the wild type MTB H37Rv rpoB (accession number L27989) and kat G genes (KP46920), respectively. Sequence analysis results were compared to genotyping results obtained from molecular assays and culture results of all isolates.ResultsThe most frequent mutation responsible for rifampicin resistance was (25/92) S531L that was detected by using all molecular assays. Some inconsistencies were observed between phenotypic and genotypic assay results for both katG and rpoB genes in 30 strains. For these, eight codons; G507S, T508A, L511V, del513-526, P520P, L524L, R528H, R529Q and S531F were novel mutations. In addition, the I572P/F, E562Q, P564S, and Q490Y mutations were identified as novel mutations outside the rifampicin resistance determining region. In katG gene, amino acid changes to threonine, asparagine and isoleucine exhibited high degrees of polymorphism such as V473N, D311N, and L427I. The R463L (20/92) amino acid substitution was most common but was not associated with isoniazid resistance.ConclusionThese finding indicate that molecular assay kit diagnosis that is based on the rpoB and katG genes should be improved to cater for the genetic variations associated with the geographic specificity of the target genes and be able to detect most prevalent mutations in different areas.

Highlights

  • Tuberculosis remains the leading causes of death worldwide with frequencies of mutations in rifampicin and isoniazid resistant Mycobacterium tuberculosis isolates varying according to geographical location

  • The objectives of this research was to determine the drug resistance profiles in M. tuberculosis isolates that are phenotypically resistant but not detected by the GeneXpert and MTBDRplus kit and to detect mutations in the RNA polymerase B subunit gene (rpoB) and katG genes which are not detected by the Hain Genotype MTBDRplus kit and GeneXpert diagnosis

  • There was a slight increase in the MDR-TB isolates that were detected by the Lowenstein Jensen (LJ) method as compared to those that were detected by genotypic assay (Figure 2, Figure 3)

Read more

Summary

Introduction

Tuberculosis remains the leading causes of death worldwide with frequencies of mutations in rifampicin and isoniazid resistant Mycobacterium tuberculosis isolates varying according to geographical location. The rpoB and katG genes molecular markers are used for detecting rifampicin and isoniazid resistance respectively. Some mutations within these gene sequences are associated with drug resistance as they directly alter gene function. Conclusion: These finding indicate that molecular assay kit diagnosis that is based on the rpoB and katG genes should be improved to cater for the genetic variations associated with the geographic specificity of the target genes and be able to detect most prevalent mutations in different areas. Some isolates have been found to be resistant based on the culture methods but the genotyping machine has not been able to detect these resistant isolates [18]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.