Abstract

Rice yellow mottle virus (RYMV) is one of the major diseases of rice in Africa. The high resistance of the Oryza glaberrima Tog7291 accession involves a null allele of the RYMV2 gene, whose ortholog in Arabidopsis, CPR5, is a transmembrane nucleoporin involved in effector-triggered immunity. To optimize field deployment of the RYMV2 gene and improve its durability, which is often a weak point in varietal resistance, we analyzed its efficiency toward RYMV isolates representing the genetic diversity of the virus and the molecular basis of resistance breakdown. Tog7291 resistance efficiency was highly variable depending on the isolate used, with infection rates ranging from 0 to 98% of plants. Back-inoculation experiments indicated that infection cases were not due to an incomplete resistance phenotype but to the emergence of resistance-breaking (RB) variants. Interestingly, the capacity of the virus to overcome Tog7291 resistance is associated with a polymorphism at amino-acid 49 of the VPg protein which also affects capacity to overcome the previously studied RYMV1 resistance gene. This polymorphism appeared to be a main determinant of the emergence of RB variants. It acts independently of the resistance gene and rather reflects inter-species adaptation with potential consequences for the durability of resistance. RB mutations were identified by full-length or partial sequencing of the RYMV genome in infected Tog7291 plants and were validated by directed mutagenesis of an infectious viral clone. We found that Tog7291 resistance breakdown involved mutations in the putative membrane anchor domain of the polyprotein P2a. Although the precise effect of these mutations on rice/RYMV interaction is still unknown, our results offer a new perspective for the understanding of RYMV2 mediated resistance mechanisms. Interestingly, in the susceptible IR64 variety, RB variants showed low infectivity and frequent reversion to the wild-type genotype, suggesting that Tog7291 resistance breakdown is associated with a major loss of viral fitness in normally susceptible O. sativa varieties. Despite the high frequency of resistance breakdown in controlled conditions, this loss of fitness is an encouraging element with regards to RYMV2 resistance durability.

Highlights

  • Varietal selection is generally considered as an effective way to control the impact of plant diseases on crop yield

  • The role of this polymorphism was confirmed by the comparison of the wild-type CIa isolate (T49) and its CIa∗49E mutant obtained by directed mutagenesis

  • T/E polymorphism is a key genetic determinant of the ability to overcome Gigante (O. sativa) and Tog5681 (O. glaberrima), two accessions possessing different resistance alleles on the RYMV1 gene (Poulicard et al, 2012): T49 isolates frequently overcome resistance of Tog5681 and rarely that of Gigante, while opposite results have been obtained for E49 isolates

Read more

Summary

Introduction

Varietal selection is generally considered as an effective way to control the impact of plant diseases on crop yield. The emergence of pathogen variants that have evolved to overcome plant resistance mechanisms is a major impediment to its use. Several retrospective and modeling studies have focused on identifying the main factors involved in resistance durability with the aim of drawing up resistance gene selection guidelines for breeders and resistance gene deployment strategies for farmers. The pathogen population first has to evolve in the resistant plant at the intra-host level. At this scale, the major determinants of resistance durability are the genetic changes required for a pathogen to overcome plant resistance mechanisms and the effects of such changes on pathogen fitness (Fabre et al, 2009)

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.