Abstract

Dowling-Degos disease (DDD), or reticular pigmented anomaly of the flexures, is a type of rare autosomal-dominant genodermatosis characterized by reticular hyperpigmentation and hypopigmentation of the flexures, such as the neck, axilla, and areas below the breasts and groin, and shows considerable heterogeneity. Loss-of-function mutations of keratin 5 (KRT5) have been identified in DDD individuals. In this study, we collected DNA samples from a large Chinese family affected by generalized DDD and found no mutation of KRT5. We performed a genome-wide linkage analysis of this family and mapped generalized DDD to a region between rs1293713 and rs244123 on chromosome 20 [corrected]. By exome sequencing, we identified nonsense mutation c.430G>T (p.Glu144(∗)) in POFUT1, which encodes protein O-fucosyltransferase 1, in the family. Study of an additional generalized DDD individual revealed the heterozygous deletion mutation c.482delA (p.Lys161Serfs(∗)42) in POFUT1. Knockdown of POFUT1 reduces the expression of NOTCH1, NOTCH2, HES1, and KRT5 in HaCaT cells. Using zebrafish, we showed that pofut1 is expressed in the skin and other organs. Morpholino knockdown of pofut1 in zebrafish produced a phenotype characteristic of hypopigmentation at 48 hr postfertilization (hpf) and abnormal melanin distribution at 72 hpf, replicating the clinical phenotype observed in our DDD individuals. At 48 and 72 hpf, tyrosinase activities decreased by 33% and 45%, respectively, and melanin protein contents decreased by 20% and 25%, respectively. Our findings demonstrate that POFUT1 mutations cause generalized DDD. These results strongly suggest that the protein product of POFUT1 plays a significant and conserved role in melanin synthesis and transport.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.