Abstract

Holoprosencephaly (HPE) is a failure of the forebrain to bifurcate and is the most common structural malformation of the embryonic brain. Mutations in SHH underlie most familial (17%) cases of HPE; and, consistent with this, Shh is expressed in midline embryonic cells and tissues and their derivatives that are affected in HPE. It has long been recognized that a graded series of facial anomalies occurs within the clinical spectrum of HPE, as HPE is often found in patients together with other malformations such as acrania, anencephaly, and agnathia. However, it is not known if these phenotypes arise through a common etiology and pathogenesis. Here we demonstrate for the first time using mouse models that Hedgehog acyltransferase (Hhat) loss-of-function leads to holoprosencephaly together with acrania and agnathia, which mimics the severe condition observed in humans. Hhat is required for post-translational palmitoylation of Hedgehog (Hh) proteins; and, in the absence of Hhat, Hh secretion from producing cells is diminished. We show through downregulation of the Hh receptor Ptch1 that loss of Hhat perturbs long-range Hh signaling, which in turn disrupts Fgf, Bmp and Erk signaling. Collectively, this leads to abnormal patterning and extensive apoptosis within the craniofacial primordial, together with defects in cartilage and bone differentiation. Therefore our work shows that Hhat loss-of-function underscrores HPE; but more importantly it provides a mechanism for the co-occurrence of acrania, holoprosencephaly, and agnathia. Future genetic studies should include HHAT as a potential candidate in the etiology and pathogenesis of HPE and its associated disorders.

Highlights

  • (HPE) is a congenital malformation resulting from the failure of the forebrain to divide into left and right hemispheres [1,2]

  • HPE is a failure of the forebrain to bifurcate and is a heterogeneous disorder that is often found in patients together with other craniofacial malformations. It is not known if these phenotypes arise through a common etiology and pathogenesis, as the genetic lesions responsible for HPE have only been identified in about 20% of affected individuals

  • We demonstrate for the first time that Hedgehog acyltransferase (Hhat) loss-offunction leads to holoprosencephaly together with acrania and agnathia, which highlights the importance of Hh signaling in complex craniofacial disorders

Read more

Summary

Introduction

(HPE) is a congenital malformation resulting from the failure of the forebrain to divide into left and right hemispheres [1,2]. Alobar holoprosencephaly is the most severe form, and in this case hemisphere bifurcation completely fails to occur resulting in the forebrain developing as a single holosphere together with a single cyclopic eye [5]. In milder instances such as lobar holoprosencephaly, near complete hemisphere separation occurs but cortical structures are hypoplastic and specific brain nuclei remain congruous [5]. HPE is a heterogeneous disorder and this is true etiologically

Methods
Findings
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.