Abstract

We investigated mutations in the quinolone resistance-determining region (QRDR) of ciprofloxacinnonsusceptible extended-spectrum -lactamase (ESBL)-producing Escherichia coli and Klebsiella pneumoniae by a statistical analysis. We collected 97 clinical isolates of ciprofloxacin-nonsusceptible ESBL-producing E. coli (55 strains) and K. pneumoniae (42 strains) from a tertiary-care university hospital in Seoul, Republic of Korea, between 2006 and 2008. The QRDR of the gyrA, gyrB, parC, and parE genes were amplified by PCR and sequenced. Most E. coli isolates (53/55; 96.4%) with a minimum inhibitory concentration of ≥ 64 mg/L against ciprofloxacin had double mutations in gyrA (Ser-83Leu and Asp-87Asn) and at least one mutation in parC (Ser-80 Ile or Glu-84Val), with or without one in parE. Fifty E. coli (90.9%) isolates had a mutation in parE, of which Ile-529Leu (70.9%) was the most frequent. However, we could not find statistically significant variables in increasing ciprofloxacin resistance in E. coli isolates. Thirty-six K. pneumoniae isolates (36/42; 85.7%) had at least one mutation in gyrA, gyrB, or parC, and the mutation in gyrA might have been associated with plasmid-mediated quinolone-resistance (PMQR). Ser-80Ile in parC and aac(6')-Ib-cr in the K. pneumoniae isolates were significantly associated with an increased MIC of ciprofloxacin by ordinal logistic regression analysis. The Ser-80Ile in parC and aac(6')-Ib-cr in K. pneumoniae are supposed to play an important role in increased ciprofloxacin resistance, but statistically significant variables could not be found in E. coli isolates in the present study.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call