Abstract

Neurons are highly specialized for the processing and transmission of electrical signals and use cytoskeleton-based motor proteins to transport different vesicles and cellular materials. Abnormalities in intracellular transport are thought to be a critical factor in the degeneration and death of neurons in both the central and peripheral nervous systems. Several recent studies describe disruptive mutations in the minus-end-directed microtubule motor cytoplasmic dynein that are directly linked to human motor neuropathies, such as SMA (spinal muscular atrophy) and axonal CMT (Charcot-Marie-Tooth) disease or malformations of cortical development, including lissencephaly, pachygyria and polymicrogyria. In addition, genetic defects associated with these and other neurological disorders have been found in multifunctional adaptors that regulate dynein function, including the dynactin subunit p150(Glued), BICD2 (Bicaudal D2), Lis-1 (lissencephaly 1) and NDE1 (nuclear distribution protein E). In the present paper we provide an overview of the disease-causing mutations in dynein motors and regulatory proteins that lead to a broad phenotypic spectrum extending from peripheral neuropathies to cerebral malformations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.