Abstract

The escape of human immunodeficiency virus type 1 from effects of neutralizing antibodies was studied by using neutralization-resistant (NR) variants generated by growing the neutralization-sensitive (NS) wild-type MN virus in the presence of human serum with neutralizing antibodies, more than 99% of which were directed at the V3 region of gp120. The variants obtained had broad neutralization resistance to human sera, without limitation with respect to the V3 specificity of the sera. The molecular basis for the resistance was evaluated with molecularly cloned viruses, as well as with pseudoviruses expressing envelope glycoproteins of the NS and NR phenotypes. Nucleotide sequence analyses comparing NS and NR clones revealed a number of polymorphisms, including six in the V1/V2 region, two in C4/V5 of gp120, three in the leucine zipper (LZ) domain of gp41, and two in the second external putative alpha-helix region of gp41. A series of chimeras from NS and NR env genes was constructed, and each was presented on pseudoviruses to locate the domain(s) which conferred the phenotypic changes. The neutralization phenotypes of the chimeric clones were found to be dependent on mutations in both the C4/V5 region of gp120 and the LZ region of gp41. Additionally, interaction between mutations in gp120 and gp41 was demonstrated in that a chimeric env gene consisting of a gp120 coding sequence from an NS clone and a gp41 sequence from an NR clone yielded a pseudovirus with minimal infectivity. The possible significance of predicted amino acid changes in these domains is discussed. The results indicate that polyvalent antibodies predominantly directed against V3 can induce NR through selection for mutations that alter interactions of other domains in the envelope complex.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.