Abstract

The influenza virus neuraminidase (NA)-specific inhibitor zanamivir (4-guanidino-Neu5Ac2en) is effective in humans when administered topically within the respiratory tract. The search for compounds with altered pharmacological properties has led to the identification of a novel series of influenza virus NA inhibitors in which the triol group of zanamivir has been replaced by a hydrophobic group linked by a carboxamide at the 6 position (6-carboxamide). NWS/G70C variants generated in vitro, with decreased sensitivity to 6-carboxamide, contained hemagglutinin (HA) and/or NA mutations. HA mutants bound with a decreased efficiency to the cellular receptor and were cross-resistant to all the NA inhibitors tested. The NA mutation, an Arg-to-Lys mutation, was in a previously conserved site, Arg292, which forms part of a triarginyl cluster in the catalytic site. In enzyme assays, the NA was equally resistant to zanamivir and 4-amino-Neu5Ac2en but showed greater resistance to 6-carboxamide and was most resistant to a new carbocyclic NA inhibitor, GS4071, which also has a hydrophobic side chain at the 6 position. Consistent with enzyme assays, the lowest resistance in cell culture was seen to zanamivir, more resistance was seen to 6-carboxamide, and the greatest resistance was seen to GS4071. Substrate binding and enzyme activity were also decreased in the mutant, and consequently, virus replication in both plaque assays and liquid culture was compromised. Altered binding of the hydrophobic side chain at the 6 position or the triol group could account for the decreased binding of both the NA inhibitors and substrate.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.