Abstract

Elucidating how insulin and the related insulin-like growth factors 1 and 2 (IGF-1 and IGF-2) bind to their cellular receptors (IR and IGF-1R) and how the receptors are activated has been the holy grail for generations of scientists. However, deciphering the 3D structure of tyrosine kinase receptors and their hormone-bound complexes has been complicated by the flexible and dimeric nature of the receptors and the dynamic nature of their interaction with hormones. Therefore, mutagenesis of hormones and kinetic studies first became an important tool for studying receptor interactions. It was suggested that hormones could bind to receptors through two binding sites on the hormone surface called site 1 and site 2. A breakthrough in knowledge came with the solution of cryoelectron microscopy (cryoEM) structures of hormone-receptor complexes. In this chapter, we document in detail the mutagenesis of insulin, IGF-1, and IGF-2 with emphasis on modifications of the hypothetical binding site 2 in the hormones, and we discuss the results of structure-activity studies in light of recent cryoEM structures of hormone complexes with IR and IGF-1R.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.