Abstract
trans-4-Hydroxy-2-nonenal (4-HNE), a major product of lipid peroxidation, is able to interact with DNA to form 6-(1-hydroxyhexanyl)-8-hydroxy-1,N(2)-propano-2'-deoxyguanosine (4-HNE-dG) adducts, but its genotoxicity and mutagenicity remain elusive. It has been reported that 4-HNE treatment in human cells induces a high frequency of G.C to T.A mutations at the third base of codon 249 (AGG*) of the p53 gene, a mutational hot spot in human cancers, particularly in hepatocellular carcinoma. This G.C to T.A transversion at codon 249, however, has been thought to be caused by etheno-DNA adducts induced by the endogenous metabolite of 4-HNE, 2,3-epoxy-4-hydroxynonanal. We have recently found that 4-HNE preferentially forms 4-HNE-dG adducts at the GAGG*C/A sequence in the p53 gene including codon 249 (GAGG*C). Our finding supports the possibility that G.C to T.A mutations at codon 249 may be induced by 4-HNE-dG adducts. To investigate this possibility, we determined the mutational spectrum induced by 4-HNE-dG adducts in the supF gene of shuttle vector pSP189 replicated in human cells. We have found that 4-HNE-dG adducts are mutagenic and genotoxic in human cells, and that G.C to T.A transversions are the most prevalent mutations induced by 4-HNE-dG adducts. Furthermore, 4-HNE-dG adducts induce a significantly higher level of genotoxicity and mutagenicity in nucleotide excision repair (NER)-deficient human and Escherichia coli cells than in NER-proficient cells, indicating that NER is a major pathway for repairing 4-HNE-dG adducts in both human and E. coli cells. Together, these results suggest that 4-HNE-dG adducts may contribute greatly to the G.C to T.A mutation at codon 249 of the p53 gene, and may play an important role in carcinogenesis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.