Abstract

Objective: The purpose of the current work was to characterize mechanisms of cytotoxicity and mutagenesis of a potential human bladder carcinogen 2,6-dimethylaniline (2,6-DMA).Methods: Chinese hamster ovary (CHO) AS52 cells were exposed to either human S9 activated 2,6-DMA for 6 h or its N-hydroxylamine and aminophenol metabolites for 1 h in serum-free medium. Cell survival determined by trypan blue exclusion 24 h after treatment, and 6-thioguanine-resistant mutants at the xanthine-guanine phosphoribosyltransferase (gpt) gene locus were assessed with doses of which relative survival is 30% or more. Nested PCR-based deletion analysis was also performed.Results: AS52 cells exhibited a dose-dependent increase in cytotoxicity and mutant fraction upon treatment of 2,6-DMA and its metabolites, but showing considerable variation in potency with aminophenol metabolites having the highest potency and parent compound at least; at the highest 2,6-dimethyaminophenol dose (10 μM), the mutant fraction in AS52 cells was 8 fold (13.2×10-5) greater than the spontaneous fraction of 1.62×10-5. Total deletion of the gpt gene sequences was found in 1 (4%) of spontaneous and 2 (6%) of the 6-thioguanine mutants generated by N-hydroxy-2,6-DMA.Conclusion: These findings indicate the mutagenicity of 2,6-DMA at the gpt gene, which is mediated through hydroxylamine and aminophenol metabolites, and contribute to the elucidation of mechanisms through which 2,6-DMA may exert its effects in vivo.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call