Abstract

The alpha-factor mating pheromone receptor (encoded by STE2) activates a G protein signaling pathway that stimulates the conjugation of Saccharomyces cerevisiae yeast cells. The alpha-factor receptor is known to undergo several forms of post-translational modification, including phosphorylation, mono-ubiquitination, and N-linked glycosylation. Since phosphorylation and mono-ubiquitination have been shown previously to play key roles in regulating the signaling activity and membrane trafficking of the alpha-factor receptors, the role of N-linked glycosylation was investigated in this study. The Asn residues in the five consensus sites for N-linked glycosylation present in the extracellular regions of the receptor protein were mutated to prevent carbohydrate attachment at these sites. Mutation of two sites near the receptor N-terminus (N25Q and N32Q) diminished the degree of receptor glycosylation, and the corresponding double mutant was not detectably N-glycosylated. The nonglycosylated receptors displayed normal function and subcellular localization, indicating that glycosylation is not important for wild-type receptor activity. However, mutation of the glycosylation sites resulted in improved plasma membrane localization for the Ste2-3 mutant receptors that are normally retained intracellularly at elevated temperatures. These results suggest that N-glycosylation may be involved in the sorting process for misfolded Ste2 proteins, and may similarly affect certain mutant receptors whose altered trafficking is implicated in human diseases.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.