Abstract

The major cold-shock protein of Bacillus subtilis, CspB, is a member of a protein family widespread among prokaryotes and eukaryotes that share the highly conserved cold-shock domain (CSD). The CSD domain is involved in transcriptional and translational regulation and was shown to bind the Y-box motif, a cis-element that contains the core sequence ATTGG, with high affinity. The three-dimensional structure of CspB, a prototype of this protein family, revealed that this hydrophilic CSD domain creates a surface rich in aromatic and basic amino acids that may act as the nucleic acid-binding site. We have analysed the potential role of conserved aromatic and basic residues in nucleic acid binding by site-directed mutagenesis. In gel retardation and ultraviolet cross-linking experiments, the ability of CspB mutants to bind single-stranded oligonucleotides (ssDNA) that contain the Y-box motif was investigated. Single substitutions of three highly conserved phenylalanine residues (Phe-15, Phe-17, Phe-27) by alanine and substitution of one histidine (His-29) by glutamine, all located within the putative RNA-binding sites RNP-1 and RNP-2, abolished the nucleic acid-binding activity of CspB. Conservative substitutions of Phe-15 to tyrosine (F15Y) showed a small increase in binding affinity, whereas separate replacement of Phe-17 and Phe-27 by tyrosine caused a reduction in binding activity. These and other substitutions including the conserved basic residues Lys-7, Lys-13 and Arg-56 as well as the aromatic residues Trp-8 and Phe-30 strongly suggest that CspB uses the side-chains of these amino acids for specific interaction with nucleic acids. Ultraviolet cross-linking experiments for CspB mutants with ssDNA supported the idea of specific CspB/nucleic acid interaction and indicated an essential role for the aromatic and basic residues in this binding. In addition, two-dimensional nuclear magnetic resonance studies with F17A, K13Q, F15Y and F27Y revealed that the mutants have the same overall structure as the wild-type CspB protein.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.