Abstract
Reverse gyrase is a unique type IA topoisomerase that is able to introduce positive supercoils into DNA in an ATP-dependent process. ATP is bound to the helicase-like domain of the enzyme that contains most of the conserved motifs found in helicases of the SF1 and SF2 superfamilies. In this paper, we have investigated the role of the conserved helicase motifs I, II, V, VI, and Q by generating mutants of the Thermotoga maritima reverse gyrase. We show that mutations in motifs I, II, V, and VI completely eliminate the supercoiling activity of reverse gyrase and that a mutation in the Q motif significantly reduces this activity. Further analysis revealed that for most mutants, the DNA binding and cleavage properties are not significantly changed compared with the wild type enzyme, whereas their ATPase activity is impaired. These results clearly show that the helicase motifs are tightly involved in the coupling of ATP hydrolysis to the topoisomerase activity. The zinc finger motif located at the N-terminal end of reverse gyrases was also mutated. Our results indicate that this motif plays an important role in DNA binding.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.