Abstract

The finding of a reduced insulin-stimulated glucose uptake and glycogen synthesis in the skeletal muscle of glucose-tolerant first-degree relatives of patients with NIDDM, as well as in cultured fibroblasts and skeletal muscle cells isolated from NIDDM patients, has been interpreted as evidence for a genetic involvement in the disease. The mode of inheritance of the common forms of NIDDM is as yet unclear, but the prevailing hypothesis supports a polygenic model. In the present study, we tested the hypothesis that the putative inheritable defects of insulin-stimulated muscle glycogen synthesis might be caused by genetic variability in the genes encoding proteins shown by biochemical evidence to be involved in insulin-stimulated glycogen synthesis in skeletal muscle. In 70 insulin-resistant Danish NIDDM patients, mutational analysis by reverse transcription-polymerase chain reaction-single strand conformation polymorphism-heteroduplex analysis was performed on genomic DNA or skeletal muscle-derived cDNAs encoding glycogenin, protein phosphatase inhibitor-1, phophatase targeting to glycogen, protein kinase B-alpha and -beta, and the phosphoinositide-dependent protein kinase-1. Although a number of silent variants were identified in some of the examined genes, we found no evidence for the hypothesis that the defective insulin-stimulated glycogen synthesis in skeletal muscle in NIDDM is caused by structural changes in the genes encoding the known components of the insulin-sensitive glycogen synthesis pathway of skeletal muscle.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.