Abstract

The control of cellular iron homeostasis involves the coordinate post-transcriptional regulation of ferritin mRNA translation and transferring receptor mRNA stability. These regulatory events are mediated by a soluble cytoplasmic protein, iron regulatory factor (IRF), which binds specifically to mRNA hairpin structures, termed iron-responsive elements (IREs), in the respective mRNAs. IRF is modulated by variations of cellular iron levels and exists as either an apo-protein or a [4Fe-4S]-cluster protein. The two conformations show distinct, mutually exclusive functions. High-affinity IRE binding is observed with the apo-form induced by iron deprivation, but is lost under high iron conditions when IRF is converted to the [4Fe-4S]-cluster form which shows cytoplasmic aconitase activity. Moreover, IRE binding is inactivated by the sulfhydryl-oxidizing agent diamide and fully activated in vitro by 2% 2-mercapto-ethanol, whereas alkylation of IRF inhibits IRE binding. In the present study, we analyzed each of the above features using site-directed mutants of recombinant human IRF. The results support the bifunctional nature of IRF. We conclude that cysteines 437, 503 and 506 anchor the [4Fe-4S]-cluster, and are essential to the aconitase activity. Mutagenesis changing any of the cysteines to serine leads to constitutive RNA binding in 0.02% 2-mercaptoethanol. Cysteine 437 is particularly critical to the RNA-protein interaction. The spontaneous or diamide-induced formation of disulfide bonds between cysteines 437 and 503 or 437 and 506, in apo-IRF, as well as its alkylation by N-ethylmaleimide, inhibit binding to the IRE.(ABSTRACT TRUNCATED AT 250 WORDS)

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.