Abstract
When the rnpB gene encoding M1 RNA, the RNA component of Escherichia coli RNase P, is transcribed, the primary M1 RNA transcript (pM1 RNA) is produced and subsequently processed at the 3' end to generate the mature M1 RNA. To study features of pM1 RNA thought to be involved in RNA processing, systematic mutations were introduced in sequence elements and secondary structures surrounding the processing site using p23 RNA, a truncated pM1 RNA transcribed from the internally deleted rnpB gene, as a model substrate and the processing of its mutant derivatives was analyzed in vivo and in vitro. Neither the alteration of two bases forming the processing site nor the disruption of secondary structures surrounding the site significantly affected the processing efficiency although the secondary structures were required for maintaining RNA stability. In contrast, mutations at the rne-dependent site, GAUUU, immediately 3' to the processing site inhibited the processing and the extent of the inhibition varied with the altered sequences. Furthermore, the processing of the mutants of the rne-dependent site as well as wild-type p23 RNA was inhibited in an E. coli rnets strain at the nonpermissive temperature.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.