Abstract

Protein aggregation is a common phenomenon. The preparation of highly concentrated protein samples, typically required for biophysical measurements, often involves a time consuming and tedious testing of solvent conditions for improving protein solubility. Here, in a systematic analysis, we have determined the increase in solubility upon the addition of SEP-tags (solubility enhancement peptide tags) containing, one, three, and five lysines or arginines (or six arginines) to either the N or C terminus of our low solubility model protein, bovine pancreatic trypsin inhibitor variant, BPTI-22 (a BPTI variant containing 22 alanines). As anticipated, the BPTI-22 solubility increased in direct relation to the number of charged residues contained in the SEP-tag, and without altering either the activity or the structure of the protein. The largest solubility increases were of 4.2-, 4.8-, and 6.2-folds produced by the addition, at the C terminus, of five lysine (BPTI-22-C5K), five and six arginine residues (BPTI-22-C5R and BPTI-22-C6R), respectively. The increased solubility of the tagged BPTI-22 yielded higher quality NMR spectra (hetero single quantum correlation HSQC spectra; with respect of the signal-to-noise and line shapes) in a much shorter time than for the untagged BPTI-22. Furthermore, tagged samples remained soluble for over ten days, as observed by their HSQC spectra. We believe that lysine- and arginine-based SEP-tags may provide an effective and versatile method for enhancing protein solubility.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call