Abstract

BackgroundThe Hedgehog (HH) signaling pathway is critical for embryonic development and adult homeostasis. Recent studies have identified regulatory roles for this pathway in certain cancers with mutations in the HH pathway genes. The extent to which mutations of the HH pathway genes are involved in the pathogenesis of malignant mesothelioma (MMe) is unknown.Methodology/Principal FindingsReal-time PCR analysis of HH pathway genes PTCH1, GLI1 and GLI2 were performed on 7 human MMe cell lines. Exon sequencing of 13 HH pathway genes was also performed in cell lines and human MMe tumors. In silico programs were used to predict the likelihood that an amino-acid substitution would have a functional effect. GLI1, GLI2 and PTCH1 were highly expressed in MMe cells, indicative of active HH signaling. PTCH1, SMO and SUFU mutations were found in 2 of 11 MMe cell lines examined. A non-synonymous missense SUFU mutation (p.T411M) was identified in LO68 cells. In silico characterization of the SUFU mutant suggested that the p.T411M mutation might alter protein function. However, we were unable to demonstrate any functional effect of this mutation on Gli activity. Deletion of exons of the PTCH1 gene was found in JU77 cells, resulting in loss of one of two extracellular loops implicated in HH ligand binding and the intracellular C-terminal domain. A 3-bp insertion (69_70insCTG) in SMO, predicting an additional leucine residue in the signal peptide segment of SMO protein was also identified in LO68 cells and a MMe tumour.Conclusions/SignificanceWe identified the first novel mutations in PTCH1, SUFU and SMO associated with MMe. Although HH pathway mutations are relatively rare in MMe, these data suggest a possible role for dysfunctional HH pathway in the pathogenesis of a subgroup of MMe and help rationalize the exploration of HH pathway inhibitors for MMe therapy.

Highlights

  • Malignant mesothelioma (MMe) is an aggressive, incurable cancer that arises from mesothelial cells that line the serosal cavities of the pleura, peritoneum, pericardium and tunica vaginalis testis

  • We used Quantitative Realtime PCR Analysis (qRT-PCR) to demonstrate the mRNA expression of transcription factors GLI1 and GLI2, activators of the canonical HH signaling pathway and a downstream HH target gene PTCH1, in a panel of 7 human malignant mesothelioma (MMe) cell lines (Figure 2)

  • No mutation was found in the exonic regions of SHH, DHH, IHH, PTCH1, PTCH2, HHinteracting protein (HHIP), KIF7, GLI1, GLI2 and GLI3 genes

Read more

Summary

Introduction

Malignant mesothelioma (MMe) is an aggressive, incurable cancer that arises from mesothelial cells that line the serosal cavities of the pleura, peritoneum, pericardium and tunica vaginalis testis. The global incidence of MMe has been on the rise since the 1960s and is projected to increase until at least 2050 due to the widespread use of asbestos during the past decades [2,3,4,5]. MMe is highly refractory to current treatment modalities including chemotherapy, radiotherapy and surgery, with a short median survival time of less than 12 months after first diagnosis [6]. The extent to which mutations of the HH pathway genes are involved in the pathogenesis of malignant mesothelioma (MMe) is unknown

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.