Abstract
We investigated the roles of fliF, fliS, flhB, fliQ, fliG, and fliI of Helicobacter pylori, predicted by homology to encode structural components of the flagellar basal body and export apparatus. Mutation of these genes resulted in nonmotile, nonflagellate strains. Western blot analysis showed that all the mutants had considerably reduced levels of both flagellin subunits and of FlgE, the flagellar hook protein. RNA slot blot hybridization showed reduced levels of flaA mRNA, indicating that transcription of the major flagellin gene is inhibited in the absence of the early components of the flagellar-assembly pathway. This is the first demonstration of a checkpoint in H. pylori flagellar assembly.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.