Abstract

We cloned the feruloyl esterase A gene from Aspergillus awamori (AwfaeA) and engineered it to study substrate specificity and pH dependence of catalysis. Based on the crystal structures of two type-A feruloyl esterases (FAE-III and AnFAEA) from Aspergillus niger, residues located in the flap region of AwFAEA (Asp71, Thr72, Asp77, and Tyr80) were replaced with corresponding amino acid residues (Ile, Arg, Asn, and Phe), respectively, found in the lid of lipases from Rhizomucor miehei (RmLIP) and Humicola lanuginose (HlLIP). Furthermore, Asp77 of AwFAEA, which is conserved in Aspergillus FAEs and lipases, was replaced with a hydrophobic residue (Ile). Kinetic analysis of the mutant enzymes showed that the higher catalytic efficiency of the D77I and Y80F mutants toward alpha-naphthylbutyrate (C4) and alpha-naphthylcaprylate (C8), respectively, was due to a lower K(m) value. The higher catalytic efficiency of D77N toward C4 substrate was due to a combination of decreased K(m) and considerably increased k(cat). The D71I and Y80F mutants showed some activity toward long-acyl chain esters. On the other hand, the D77I mutant had no detectable activity toward phenolic acid methyl esters and feruloylated arabinoxylan. Moreover, the pH optima of the D77I, D77N, and Y80F mutants increased from 5.0 to 7.0-8.0, 7.0, and 6.0, respectively.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.