Abstract
The HAMP linker, a predicted structural element observed in sensor proteins from all domains of life, is proposed to transmit signals between extracellular sensory input domains and cytoplasmic output domains. HAMP (histidine kinase, adenylyl cyclase, methyl-accepting chemotaxis protein, and phosphatase) linkers are located just inside the cytoplasmic membrane and are projected to form two short amphipathic alpha-helices (AS-1 and AS-2) joined by an unstructured connector. The presumed helices are comprised of hydrophobic residues in heptad repeats, with only three positions exhibiting strong conservation. We generated missense mutations at these three positions and throughout the HAMP linker in the Escherichia coli nitrate sensor kinase NarX and screened the resulting mutants for defective responses to nitrate. Most missense mutations in this region resulted in a constitutive phenotype mimicking the ligand-bound state, and only one residue (a conserved Glu before AS-2) was essential for HAMP linker function. We also scanned the narX HAMP linker with an overlapping set of seven-residue deletions. Deletions in AS-1 and the connector resulted in constitutive phenotypes. Two deletions in AS-2 resulted in a novel reversed response phenotype in which the response to ligand was the opposite of that seen for the narX(+) strain. These observations are consistent with the proposed HAMP linker structure, show that the HAMP linker plays an active role in transmembrane signal transduction, and indicate that the two amphipathic alpha-helices have different roles in signal transduction.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.