Abstract

Vaccinia DNA topoisomerase, a 314 amino acid type I enzyme, catalyzes the cleavage and rejoining of DNA strands through a DNA-(3'-phosphotyrosyl)-enzyme intermediate formed at a specific target sequence, 5'-(C/T)CCTT downward arrow. To identify amino acids that participate in the DNA binding and transesterification steps, we introduced alanine substitutions at 18 positions within a centrally located 27 amino acid segment (181-RLYKPLLKLTDDSSPEEFLFNKLSERK-207) and at 8 positions near the N-terminus (1-MRALFYKDGK-10). All mutant proteins except two displayed wild-type activity in relaxing supercoiled DNA. F200A and S204A exhibited reduced rates of relaxation and were subjected to a kinetic analysis of the strand cleavage reaction under single-turnover and equilibrium conditions. The F200A and S204A mutations reduced the rate of single-turnover DNA cleavage by factors of 5 and 70, respectively. Both mutations shifted the cleavage-religation equilibrium in favor of the noncovalently bound state. The S204A mutation reduced the affinity of topoisomerase for CCCTT-containing DNA, but did not alter the site-specificity of DNA cleavage. Vaccinia residue Ser-204, which is conserved in all poxvirus topoisomerases, but not in the cellular homologues, may contribute to the unique cleavage site specificity of the poxvirus enzymes. Phe-200 is conserved in all members of the type IB topoisomerase family.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.