Abstract

Retinoblastoma (RB) is a rare childhood malignant disorder caused by the biallelic inactivation of RB1 gene. Early diagnosis and identification of carriers of heritable RB1 mutations can improve disease outcome and management. In this study, mutational analysis was conducted on fifty-nine matched tumor and peripheral blood samples from 18 bilateral and 41 unilateral unrelated RB cases by a combinatorial approach of Multiplex Ligation-dependent Probe Amplification (MLPA) assay, deletion screening, direct sequencing, copy number gene dosage analysis and methylation assays. Screening of both blood and tumor samples yielded a mutation detection rate of 94.9% (56/59) while only 42.4% (25/59) of mutations were detected if blood samples alone were analyzed. Biallelic mutations were observed in 43/59 (72.9%) of tumors screened. There were 3 cases (5.1%) in which no mutations could be detected and germline mutations were detected in 19.5% (8/41) of unilateral cases. A total of 61 point mutations were identified, of which 10 were novel. There was a high incidence of previously reported recurrent mutations, occurring at 38.98% (23/59) of all cases. Of interest were three cases of mosaic RB1 mutations detected in the blood from patients with unilateral retinoblastoma. Additionally, two germline mutations previously reported to be associated with low-penetrance phenotypes: missense-c.1981C>T and splice variant-c.607+1G>T, were observed in a bilateral and a unilateral proband, respectively. These findings have implications for genetic counselling and risk prediction for the affected families. This is the first published report on the spectrum of mutations in RB patients from Singapore and shows that further improved mutation screening strategies are required in order to provide a definitive molecular diagnosis for every case of RB. Our findings also underscore the importance of genetic testing in supporting individualized disease management plans for patients and asymptomatic family members carrying low-penetrance, germline mosaicism or heritable unilateral mutational phenotypes.

Highlights

  • Retinoblastoma (RB) is a retinal cancer associated with biallelic loss of RB1 gene

  • The mortality rate in Asia (39%) is much higher than that of Europe, Canada, and the USA (3–5%) [1] due to the gap in healthcare access which primarily refers to the fact that majority of RB patients are diagnosed in low- and middle-income countries, whereas the bulk of retinoblastoma-specific health care facilities are available in high-income countries [5]

  • Non-heritable RB arises from somatic mutations occurring on both alleles of RB1 gene in the developing retina, whereas heritable RB arises from the inheritance of at least one germline mutation along with an acquired RB1 somatic mutation [6]

Read more

Summary

Introduction

The global incidence of this disease is 1 case in 15,000 to 20,000 live births [1] with the average annual incidence in Singapore reported as 2.4 to 11.1 cases per million children [2,3] occurring among males and females [4]. Non-heritable RB arises from somatic mutations occurring on both alleles of RB1 gene in the developing retina, whereas heritable RB arises from the inheritance of at least one germline mutation along with an acquired RB1 somatic mutation [6]. In heritable RB, offspring have a 50% chance of inheriting the mutant RB1 allele from an affected parent. Such an inheritance of the mutant RB1 allele results in a 97% risk of developing the disease and a high lifelong risk of secondary cancers [8]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call