Abstract

Although thyroid dyshormonogenesis (TDH) accounts for 10-20% of congenital hypothyroidism (CH), the molecular etiology of TDH is unknown in Bangladesh. Thyroid peroxidase (TPO) is most frequently associated with TDH and the present study investigated the spectrum of TPO mutations in Bangladeshi patients and analyzed the effects of mutations on TPO protein structure through in silico approach. Sequencing-based analysis of TPO gene revealed four mutations in 36 diagnosed patients with TDH including three nonsynonymous mutations, namely, p.Ala373Ser, p.Ser398Thr, and p.Thr725Pro, and one synonymous mutation p.Pro715Pro. Homology modelling-based analysis of predicted structures of MPO-like domain (TPO142-738) and the full-length TPO protein (TPO1-933) revealed differences between mutant and wild type structures. Molecular docking studies were performed between predicted structures and heme. TPO1-933 predicted structure showed more reliable results in terms of interactions with the heme prosthetic group as the binding energies were -11.5 kcal/mol, -3.2 kcal/mol, -11.5 kcal/mol, and -7.9 kcal/mol for WT, p.Ala373Ser, p.Ser398Thr, and p.Thr725Pro, respectively, implying that p.Ala373Ser and p.Thr725Pro mutations were more damaging than p.Ser398Thr. However, for the TPO142-738 predicted structures, the binding energies were -11.9 kcal/mol, -10.8 kcal/mol, -2.5 kcal/mol, and -5.3 kcal/mol for the wild type protein, mutant proteins with p.Ala373Ser, p.Ser398Thr, and p.Thr725Pro substitutions, respectively. However, when the interactions between the crucial residues including residues His239, Arg396, Glu399, and His494 of TPO protein and heme were taken into consideration using both TPO1-933 and TPO142-738 predicted structures, it appeared that p.Ala373Ser and p.Thr725Pro could affect the interactions more severely than the p.Ser398Thr. Validation of the molecular docking results was performed by computer simulation in terms of quantum mechanics/molecular mechanics (QM/MM) and molecular dynamics (MD) simulation. In conclusion, the substitutions mutations, namely, p.Ala373Ser, p.Ser398Thr, and p.Thr725Pro, had been involved in Bangladeshi patients with TDH and molecular docking-based study revealed that these mutations had damaging effect on the TPO protein activity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.