Abstract

Catecholaminergic polymorphic ventricular tachycardia (CPVT) is an inherited cardiac disease characterized by arrhythmias under adrenergic stress. Mutations in the cardiac ryanodine receptor (RYR2) are the leading cause for CPVT. We characterized electrophysiological properties of CPVT patient-specific induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) carrying different mutations in RYR2 and evaluated effects of carvedilol and flecainide on action potential (AP) and contractile properties of hiPSC-CMs. iPSC-CMs were generated from skin biopsies of CPVT patients carrying exon 3 deletion (E3D) and L4115F mutation in RYR2. APs and contractile movement were recorded simultaneously from the same hiPSC-CMs. Differences in AP properties of ventricular like CMs were seen in CPVT and control CMs: APD90 of both E3D (n = 20) and L4115F (n = 25) CPVT CMs was shorter than in control CMs (n = 15). E3D-CPVT CMs had shortest AP duration, lowest AP amplitude, upstroke velocity and more depolarized diastolic potential than controls. Adrenaline had positive and carvedilol and flecainide negative chronotropic effect in all hiPSC CMs. CPVT CMs had increased amount of delayed after depolarizations (DADs) and early after depolarizations (EADs) after adrenaline exposure. E3D CPVT CMs had the most DADs, EADs, and tachyarrhythmia. Discordant negatively coupled alternans was seen in L4115F CPVT CMs. Carvedilol cured almost all arrhythmias in L4115F CPVT CMs. Both drugs decreased contraction amplitude in all hiPSC CMs. E3D CPVT CMs have electrophysiological properties, which render them more prone to arrhythmias. iPSC-CMs provide a unique platform for disease modeling and drug screening for CPVT. Combining electrophysiological measurements, we can gain deeper insight into mechanisms of arrhythmias.

Highlights

  • Human induced pluripotent stem cells can be generated from patients’ somatic cells providing endless source for research in vitro [1]

  • There were no significant differences between action potential (AP) or contraction parameters between CM aggregates and single cells (Tables S1 and S2)

  • Increased open probability of mutated RYR2 leading to spontaneous calcium release and lowered threshold for triggered activity has been identified as a primary cause Human induced pluripotent stem cells (hiPSCs) CMs

Read more

Summary

Introduction

Human induced pluripotent stem cells (hiPSCs) can be generated from patients’ somatic cells providing endless source for research in vitro [1]. The hiPSCs carry the same mutations as the patient who donated the primary cells and the differentiation of disease specific hiPSC-derived cardiomyocytes (CMs) allows disease modeling and drug development in human cells for personalized medicine. Catecholaminergic polymorphic ventricular tachycardia (CPVT) is a severe inherited cardiac disease in structurally normal heart associated with risk of sudden cardiac death [2]. CPVT patients have arrhythmias during mental or physical stress. CPVT is caused by mutations mainly in the RYR2 gene, coding for cardiac ryanodine receptor (RYR), and mutations in other genes have been observed [3]. Therapy includes drug treatment, usually with beta-blockers, and, in

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call