Abstract

Ferroptosis is a highly regulated tumor suppressor process. Loss or mutation of TP53 can cause changes in sensitivity to ferroptosis. Mutations in TP53 may be associated with the malignant or indolent progression of ground glass nodules in early lung cancer, but whether ferroptosis may also be involved in determining this biological process has not yet been determined. Using invivo and invitro gain- and loss-of-function approaches, this study used clinical tissue for mutation analysis and pathological research to show that wild-type TP53 inhibited the expression of forkhead box M1 (FOXM1) by binding to peroxisome proliferator-activated receptor-γ coactivator 1α, maintaining the mitochondrial function and thus affecting the sensitivity to ferroptosis. This function was absent in mutant cells, resulting in overexpression of FOXM1 and ferroptosis resistance. Mechanistically, FOXM1 activated the transcription level of myocyte-specific enhancer factor 2C in the mitogen-activated protein kinase signaling pathway, leading to stress protection when exposed to ferroptosis inducers. This study provides new insights into the mechanism of association between TP53 mutation and ferroptosis tolerance, which can aid a deeper understanding of the role of TP53 in the malignant progression of lung cancer.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.