Abstract

The G(M2) activator protein is required for successful degradation of G(M2) ganglioside by the A isozyme of lysosomal beta-N-acetylhexosaminidase (EC 3.2.1.52). Deficiency of the G(M2) activator protein leads to a relentlessly progressive accumulation of G(M2) ganglioside in neuronal lysosomes and subsequent fatal deterioration of central nervous system function. G(M2) activator deficiency has been described in humans, dogs and mice. This manuscript reports the discovery and characterization of a feline model of G(M2) activator deficiency that exhibits many disease traits typical of the disorder in other species. Cats deficient in the G(M2) activator protein develop clinical signs at approximately 14 months of age, including motor incoordination and exaggerated startle response to sharp sounds. Affected cats exhibit central nervous system abnormalities such as swollen neurons, membranous cytoplasmic bodies, increased sialic acid content and elevated levels of G(M2) ganglioside. As is typical of G(M2) activator deficiency, hexosaminidase A activity in tissue homogenates appears normal when assayed with a commonly used synthetic substrate. When the G(M2) activator cDNA was sequenced from normal and affected cats, a deletion of 4 base pairs was identified as the causative mutation, resulting in alteration of 21 amino acids at the C terminus of the G(M2) activator protein.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call