Abstract

BackgroundPlant cytosolic ribosomal proteins are encoded by small gene families. Mutants affecting these genes are often viable, but show growth and developmental defects, suggesting incomplete functional redundancy within the families. Dormancy to growth transitions, such as the activation of axillary buds in the shoot, are characterised by co-ordinated upregulation of ribosomal protein genes.ResultsA recessive mutation in RPS10B, one of three Arabidopsis genes encoding the eukaryote-specific cytoplasmic ribosomal protein S10e, was found to suppress the excessive shoot branching mutant max2-1. rps10b-1 mildly affects the formation and separation of shoot lateral organs, including the shoot axillary meristems. Axillary meristem defects are enhanced when rps10b-1 is combined with mutations in REVOLUTA, AUXIN-RESISTANT1, PINOID or another suppressor of max2-1, FAR-RED ELONGATED HYPOCOTYL3. In some of these double mutants, the maintenance of the primary shoot meristem is also affected. In contrast, mutation of ALTERED MERISTEM PROGRAMME1 suppresses the rps10b-1axillary shoot defect. Defects in both axillary shoot formation and organ separation were enhanced by combining rps10b-1 with cuc3, a mutation affecting one of three Arabidopsis NAC transcription factor genes with partially redundant roles in these processes. To assess the effect of rps10b-1 on bud activation independently from bud formation, axillary bud outgrowth on excised cauline nodes was analysed. The outgrowth rate of untreated buds was reduced only slightly by rps10b-1 in both wild-type and max2-1 backgrounds. However, rps10b-1 strongly suppressed the auxin resistant outgrowth of max2-1 buds. A developmental phenotype of rps10b-1, reduced stamen number, was complemented by the cDNA of another family member, RPS10C, under the RPS10B promoter.ConclusionsRPS10B promotes shoot branching mainly by promoting axillary shoot development. It contributes to organ boundary formation and leaf polarity, and sustains max2-1 bud outgrowth in the presence of auxin. These processes require the auxin response machinery and precise spatial distribution of auxin. The correct dosage of protein(s) involved in auxin-mediated patterning may be RPS10B-dependent. Inability of other RPS10 gene family members to maintain fully S10e levels might cause the rps10b-1 phenotype, as we found no evidence for unique functional specialisation of either RPS10B promoter or RPS10B protein.

Highlights

  • Plant cytosolic ribosomal proteins are encoded by small gene families

  • A recessive mutation in cytosolic ribosomal protein RPS10B partially suppresses max2-1 The strigolactone-insensitive max2-1 mutant produces an excessive number of inflorescence branches from rosette leaf axils [54]

  • The sole divergence from wild type was a G to A transition, which introduced a premature termination codon in At5g41520 (RPS10B), one of three Arabidopsis genes encoding cytoplasmic ribosomal protein S10e

Read more

Summary

Introduction

Plant cytosolic ribosomal proteins are encoded by small gene families. Mutants affecting these genes are often viable, but show growth and developmental defects, suggesting incomplete functional redundancy within the families. The timing of the initiation, subsequent growth, and the final morphology of these modules are flexible and responsive to internal and external cues This second aspect suggests that plants possess mechanisms to modulate their cellular growth machinery, including complex and energy-demanding processes such as ribosomal biogenesis, cell divison and cell expansion. During post-embryonic growth of the shoot, secondary shoot meristems can generate new growth axes These secondary meristems include leaf-associated, branchforming axillary meristems, and reproductive, floral meristems [1]. A common set of regulatory genes acts in their formation and patterning [2] Few genes, such as the Arabidopsis RAX family [3,4] seem to function exclusively in the formation of secondary shoot meristems, possibly as position specific initiators of the shoot meristematic programme. Within the three-member CUP-SHAPED COTYLEDON (CUC) gene family, CUC2 and CUC3 overlap in axillary meristem formation, while all three genes contribute to the formation of the primary shoot meristem [9,10,11,12]

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call