Abstract

The MEDIATOR complex influences the transcription of genes acting as a RNA pol II co-activator. The MED16 subunit has been related to low phosphate sensing in roots, but how it influences the overall plant growth and root development remains unknown. In this study, we compared the root growth of Arabidopsis wild-type (WT), and two alleles of MED16 (med16-2 and med16-3) mutants in vitro. The MED16 loss-of-function seedlings showed longer primary roots with higher cell division capacity of meristematic cells, and an increased number of lateral roots than WT plants, which correlated with improved biomass accumulation. The auxin response reported by DR5:GFP fluorescence was comparable in WT and med16-2 root tips, but strongly decreased in pericycle cells and lateral root primordia in the mutants. Dose-response analysis supplementing indole-3-acetic acid (IAA), or the auxin transport inhibitor N-1-naphthylphthalamic acid (NPA), indicated normal responses to auxin in the med16-2 and med16-3 mutants regarding primary root growth and lateral root formation, but strong resistance to NPA in primary roots, which could be correlated with cell division and elongation. Expression analysis of pPIN1::PIN1::GFP, pPIN3::PIN3::GFP, pIAA14:GUS, pIAA28:GUS and 35S:MED16-GFP suggests that MED16 could mediate auxin signaling. Our data imply that an altered auxin response in the med16 mutants is not necessarily deleterious for overall growth and developmental patterning and may instead directly regulate basic cellular programmes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.