Abstract

The μ opioid receptor, a primary site of action in the brain for opioid neuropeptides and opiate drugs of abuse, is a member of the seven transmembrane, G protein-coupled receptor (GPCR) superfamily. Two cysteine residues, one in each of the first two of three extracellular loops (ECLs), are highly conserved among GPCRs, and there is direct or circumstantial evidence that the residues form a disulfide bond in many of these receptors. Such a bond would dramatically govern the topology of the ECLs, and possibly affect the position of the membrane-spanning domains. Recent findings from several laboratories indicate the importance of the ECLs for opioid ligand selectivity. These conserved cysteine residues in the μ opioid receptor were studied using site-directed mutagenesis. Little or no specific binding of radiolabled opiate alkaloid or opioid peptide agonists or antagonists was observed for receptors mutated at either “disulfide cysteine” residue. Each mutant μ opioid receptor was expressed in both transiently- and stably-transfected cells, in some cases at levels comparable to the wild type receptor. The two point mutants possessing serine-for-cysteine substitutions were also observed to successfully reach the cell plasma membrane, as evidenced by electron microscopy. Consistent with related work with other GPCRs, the μ opioid receptor apparently also employs the extracellular disulfide bond. This information now permits accurate molecular modeling of extracellular aspects of the receptor, including plausible scenarios of μ receptor docking of opioid ligands known to require specific extracellular loop features for high affinity binding.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call