Abstract
Cell wall biogenesis is required for the production of seeds of higher plants. However, little is known about regulatory mechanisms underlying cell wall biogenesis during seed formation. Here we show a role for the phosphorylation of Arabidopsis cellulose synthase 1 (AtCESA1) in modulating pectin synthesis and methylesterification in seed coat mucilage. A phosphor-null mutant of AtCESA1 on T166 (AtCESA1T166A) was constructed and introduced into a null mutant of AtCESA1 (Atcesa1-1). The resulting transgenic lines showed a slight but significant decrease in cellulose contents in mature seeds. Defects in cellulosic ray architecture along with reduced levels of non-adherent and adherent mucilage were observed on the seeds of the AtCESA1T166A mutant. Reduced mucilage pectin synthesis was also reflected by a decrease in the level of uronic acid. Meanwhile, an increase in the degree of pectin methylesterification was also observed in the seed coat mucilage of AtCESA1T166A mutant. Change in seed development was further reflected by a delayed germination and about 50% increase in the accumulation of proanthocyanidins, which is known to bind pectin and inhibit seed germination as revealed by previous studies. Taken together, the results suggest a role of AtCESA1 phosphorylation on T166 in modulating mucilage pectin synthesis and methylesterification as well as cellulose synthesis with a role in seed development.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.