Abstract

Mutation of Asp20 in human interleukin-2 (IL-2) to Lys is known to result in an IL-2 molecule with unchanged binding to the p55 subunit of the IL-2 receptor, but with greatly decreased affinity for the p75 subunit (Collins, L., Tsien, W.-H., Seals, C. et al. Proc. Natl. Acad. Sci USA 1988. 85: 7709). Here we demonstrate that Lys20 IL-2 competed with a reduced (10-fold) affinity for high-affinity IL-2 receptors on two murine cell lines HT2 and CTLL. In parallel with this difference in receptor interaction, Lys20 IL-2 stimulated half-maximal HT2 cell proliferation at a 10-fold higher concentration than wild-type IL-2. However, half-maximal stimulation of CTLL cells required a 100-fold higher concentration of Lys20 IL-2. A similar 100-fold reduction in bioactivity of Lys20 IL-2 was observed for primary, activated, human or murine lymphocytes. Anti-p55 antibodies increased the concentration of Lys20 IL-2 required to stimulate HT2 cells to that required for CTLL cells. These data suggest that CTLL cells, while able to bind Lys20 IL-2 with high affinity, are lacking a p55-dependent function necessary for optimal stimulation. Therefore, p55 has a dual role, being important both for high-affinity IL-2 binding and for optimal cell triggering.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call