Abstract

BackgroundMyzus persicae is a globally important aphid pest with a history of developing resistance to insecticides. Unusually, neonicotinoids have remained highly effective as control agents despite nearly two decades of steadily increasing use. In this study, a clone of M. persicae collected from southern France was found, for the first time, to exhibit sufficiently strong resistance to result in loss of the field effectiveness of neonicotinoids.ResultsBioassays, metabolism and gene expression studies implied the presence of two resistance mechanisms in the resistant clone, one based on enhanced detoxification by cytochrome P450 monooxygenases, and another unaffected by a synergist that inhibits detoxifying enzymes. Binding of radiolabeled imidacloprid (a neonicotinoid) to whole body membrane preparations showed that the high affinity [3H]-imidacloprid binding site present in susceptible M. persicae is lost in the resistant clone and the remaining lower affinity site is altered compared to susceptible clones. This confers a significant overall reduction in binding affinity to the neonicotinoid target: the nicotinic acetylcholine receptor (nAChR). Comparison of the nucleotide sequence of six nAChR subunit (Mpα1-5 and Mpβ1) genes from resistant and susceptible aphid clones revealed a single point mutation in the loop D region of the nAChR β1 subunit of the resistant clone, causing an arginine to threonine substitution (R81T).ConclusionPrevious studies have shown that the amino acid at this position within loop D is a key determinant of neonicotinoid binding to nAChRs and this amino acid change confers a vertebrate-like character to the insect nAChR receptor and results in reduced sensitivity to neonicotinoids. The discovery of the mutation at this position and its association with the reduced affinity of the nAChR for imidacloprid is the first example of field-evolved target-site resistance to neonicotinoid insecticides and also provides further validation of exisiting models of neonicotinoid binding and selectivity for insect nAChRs.

Highlights

  • Myzus persicae is a globally important aphid pest with a history of developing resistance to insecticides

  • Topical bioassays A clone of M. persicae (FRC) originating from peach orchards in Southern France exhibited potent resistance to imidacloprid and thiamethoxam when compared to a susceptible clone (4106A) in insecticide bioassays using two different methods of topical application (Table 1)

  • A comparison of the resistance profile of field-derived clone (FRC) with 5191A using the same bioassay method (Table 1) highlights the significantly enhanced level of resistance exhibited by FRC

Read more

Summary

Introduction

Myzus persicae is a globally important aphid pest with a history of developing resistance to insecticides. Neonicotinoids have remained highly effective as control agents despite nearly two decades of steadily increasing use. Its control relies almost exclusively on the application of insecticides and, as a (knockdown resistance, kdr) giving resistance to pyrethroids [2]. Neonicotinoids such as imidacloprid, thiamethoxam, clothianidin and acetamiprid are unaffected by these mechanisms and are currently the main means of control. Despite two decades of steadily increasing use neonicotinoids have proved remarkably resilient to the development of resistance and have remained highly effective against M. persicae. At present the levels of resistance described have limited practical significance as they are insufficient to impair the field effectiveness of these insecticides [3,5]

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call