Abstract

High-throughput sequencing was applied to investigate the mutation/methylation patterns on 1q and gene expression profiles in pediatric B-cell precursor acute lymphoblastic leukemia (BCP ALL) with/without (w/wo) dup(1q). Sequencing of the breakpoint regions and all exons on 1q in seven dup(1q)-positive cases revealed non-synonymous somatic single nucleotide variants (SNVs) in BLZF1, FMN2, KCNT2, LCE1C, NES, and PARP1. Deep sequencing of these in a validation cohort w (n = 17)/wo (n = 94) dup(1q) revealed similar SNV frequencies in the two groups (47% vs. 35%; P = 0.42). Only 0.6% of the 36,259 CpGs on 1q were differentially methylated between cases w (n = 14)/wo (n = 13) dup(1q). RNA sequencing of high hyperdiploid (HeH) and t(1;19)(q23;p13)-positive cases w (n = 14)/wo (n = 52) dup(1q) identified 252 and 424 differentially expressed genes, respectively; only seven overlapped. Of the overexpressed genes in the HeH and t(1;19) groups, 23 and 31%, respectively, mapped to 1q; 60-80% of these encode nucleic acid/protein binding factors or proteins with catalytic activity. We conclude that the pathogenetically important consequence of dup(1q) in BCP ALL is a gene-dosage effect, with the deregulated genes differing between genetic subtypes, but involving similar molecular functions, biological processes, and protein classes.

Highlights

  • IntroductionThe high frequency of 1q gain strongly suggests that it plays an important pathogenetic role in tumorigenesis in general, perhaps by conferring a proliferative advantage, as indicated by a study of growth patterns of dup(1q)-positive and -negative chronic lymphocytic leukemia clones in nude mice[16]

  • Electronic supplementary material The online version of this article contains supplementary material, which is available to authorized users.Gain of 1q through a duplication or an unbalanced translocation (both are here denoted “dup(1q)”) is found by chromosome banding analysis in ~5% of pediatric B-cell precursor acute lymphoblastic leukemia (BCP ALL) cases [1, 2], but the frequency increases quite substantially if single nucleotide polymorphism array (SNP-A) analyses are performed[3, 4]

  • Such a proliferative advantage is a possible explanation for the worse prognosis of Wilms' tumors and multiple myelomas with 1q gains[8, 17, 18]

Read more

Summary

Introduction

The high frequency of 1q gain strongly suggests that it plays an important pathogenetic role in tumorigenesis in general, perhaps by conferring a proliferative advantage, as indicated by a study of growth patterns of dup(1q)-positive and -negative chronic lymphocytic leukemia clones in nude mice[16]. Such a proliferative advantage is a possible explanation for the worse prognosis of Wilms' tumors and multiple myelomas with 1q gains[8, 17, 18]

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call