Abstract

Low doses of 350 nm radiation (NUV) in the presence of 8-methoxypsoralen (8-MOP) induce predominantly mono-adducts in bacterial DNA. Further exposure to NUV in the absence of 8-MOP converts a proportion of these mono-adducts to interstrand cross-links. Using this approach the relative effects of adducts and cross-links on bacteria with different repair capacities was studied. Escherichia coli WP100 uvrA recA, believed to be totally deficient in the ability to repair 8-MOP plus NUV damage to DNA, was inactivated on average by a single photon event occurring with a quantum efficiency of about 0.03. We conclude that the inactivating lesion is probably a single mono-adduct. E. coli WP2 uvrA, deficient in excision endonuclease activity, may be inactivated by a very small number of cross-links, probably one. These conclusions are consistent with present knowledge of the repair capabilities of these bacteria. Conversion of mono-adducts to cross-links in WP2 uvrA (which occurs with a quantum efficiency of around 0.3) greatly increases lethality but results in a reduction of the induced mutation frequency presumably because cross-links are (almost) invariably lethal. In the repair-proficient strain WP2 both adducts and cross-links can be repaired but the latter are more likely than the former to lead to either death or mutation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.