Abstract

BackgroundYarrowia lipolytica is a dimorphic fungus, which switches from yeast to filament form in response to environmental conditions. For industrial purposes it is important to lock cells in the yeast or filamentous form depending on the fermentation process. yl-Hog1 kinase is a key component of the HOG signaling pathway, responsible for activating the osmotic stress response. Additionally, deletion of yl-Hog1 leads to increased filamentation in Yarrowia lipolytica, but causes significant sensitivity to osmotic stress induced by a high concentration of a carbon source.ResultsIn this study, we tested the effect of point mutations on the function of yl-Hog1 protein kinase. The targets of modification were the phosphorylation sites (T171A-Y173A) and the active center (K49R). Introduction of the variant HOG1-49 into the hog1∆ strain partially improved growth under osmotic stress, but did not recover the yeast-like shape of the cells. The HOG1-171/173 variant was not functional, and its introduction further weakened the growth of hog1∆ strains in hyperosmotic conditions. To verify a genetic modification in filament form, we developed a new system based on green fluorescent protein (GFP) for easier screening of proper mutants.ConclusionsThese results provide new insights into the functions of yl-Hog1 protein in dimorphic transition and constitute a good starting point for further genetic modification of Y. lipolytica in filament form.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.