Abstract
Proteolipid protein (Plp) gene mutation in rodents causes severe CNS dysmyelination, early death, and lethal hypoxic ventilatory depression (Miller et al., 2004). To determine if Plp mutation alters neuronal function critical for control of breathing, the nucleus tractus solitarii (nTS) of four rodent strains were studied: myelin deficient rats (MD), myelin synthesis deficient (Plp(msd)), and Plp(null) mice, as well as shiverer (Mbp(shi)) mice, a myelin basic protein mutant. Current-voltage relationships were analyzed using whole-cell patch-clamp in 300 microm brainstem slices. Voltage steps were applied, and inward and outward currents quantified. MD, Plp(msd), and Plp(null), but not Mbp(shi) neurons exhibited reduced outward current in nTS at P21. Apamin blockade of SK calcium-dependent currents and iberiotoxin blockade of BK calcium-dependent currents in the P21 MD rat demonstrated reduced outward current due to dysfunction of these channels. These results provide evidence that Plp mutation specifically alters neuronal excitability through calcium-dependent potassium channels in nTS.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.