Abstract

Malaria parasites increasingly develop resistance to all drugs available in the market, hampering the goal of reducing malaria burden. Herein, we evaluated the impact of a single-nucleotide variant, E738K, present in the 26S proteasome regulatory subunit rpn2 gene, identified in Plasmodium chabaudi resistant parasites. Plasmids carrying a functional rpn2 interspecies chimeric gene with 5' recombination region from P. falciparum and 3' from P. chabaudi were constructed and transfected into Dd2 P. falciparum parasites. The 738K variant parasite line presented increased parasite survival when subjected to dihydroartemisinin (DHA), as well as increased chymotrypsin-like activity and decreased accumulation of polyubiquitinated proteins. We thus conclude that the ubiquitin-proteasome pathway, including the 738K variant, play an important role in parasite response to DHA, being the first report of a mutation in a potential DHA drug target enhancing parasite survival and contributing to a significant advance in the understanding the biology of artemisinin resistance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.