Abstract

Tobacco remains one of the most commercially important crops due to the parasympathomimetic alkaloid nicotine used in cigarettes. Most genes involved in nicotine biosynthesis are expressed in root tissues; however, their light-dependent regulation has not been studied. Here, we identified the ELONGATED HYPOCOTYL 5 homolog, NtHY5, from Nicotiana tabacum and demonstrated that NtHY5 could complement the Arabidopsis thaliana hy5 mutant at molecular, morphological and biochemical levels. We report the development of CRISPR/Cas9-based knockout mutant plants of tobacco, NtHY5CR, and show down-regulation of the nicotine and phenylpropanoid pathway genes leading to a significant reduction in nicotine and flavonol content, whereas NtHY5 overexpression (NtHY5OX) plants show the opposite effect. Grafting experiments using wild-type, NtHY5CR, and NtHY5OX indicated that NtHY5 moves from shoot-to-root to regulate nicotine biosynthesis in the root tissue. Shoot HY5, directly or through enhancing expression of the root HY5, promotes nicotine biosynthesis by binding to light-responsive G-boxes present in the NtPMT, NtQPT and NtODC promoters. We conclude that the mobility of HY5 from shoot-to-root regulates light-dependent nicotine biosynthesis. The CRISPR/Cas9-based mutants developed, in this study; with low nicotine accumulation in leaves could help people to overcome their nicotine addiction and the risk of death.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call