Abstract

A novel mutant of the marine oil-degrading bacterium Alcanivorax borkumensis SK2, containing a mini-Tn5 transposon disrupting a "tesB-like" acyl-coenzyme A (CoA) thioesterase gene, was found to hyperproduce polyhydroxyalkanoates (PHA), resulting in the extracellular deposition of this biotechnologically important polymer when grown on alkanes. The tesB-like gene encodes a distinct novel enzyme activity, which acts exclusively on hydroxylated acyl-CoAs and thus represents a hydroxyacyl-CoA-specific thioesterase. Inactivation of this enzyme results in the rechanneling of CoA-activated hydroxylated fatty acids, the cellular intermediates of alkane degradation, towards PHA production. These findings may open up new avenues for the development of simplified biotechnological processes for the production of PHA as a raw material for the production of bioplastics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.