Abstract

Nonsense-defective auxotrophic strains of Escherichia coli B/r were used to study mutation frequency decline (MFD) after mutagenesis with ethyl methanesulfonate (EMS). The mutation frequencies for prototrophic revertants that were either converted or de novo glutamine tRNA suppressor mutations declined as treated auxotrophic parental cells were incubated with glucose but without required amino acids (a condition typically producing MFD). The decline for converted suppressor mutations was more rapid than the decline for de novo suppressor mutations after low or moderate EMS treatment, but both suppressor mutation types showed the same slow decline after extensive treatment. The declines for both types of suppressor mutation were eliminated in uvrA-defective cells, and the rapid decline seen for converted suppressor mutations appeared as a slow decline in mfd-defective cells. The results are interpreted that true MFD (the rapid process) affects only the EMS-induced converted glutamine tRNA suppressor mutations. This would account for the rapid decline that is blocked in cells with an mfd defect and in cells with deficient excision repair activity ( uvrA or excessive DNA damage). In addition, a second non-specific antimutation mechanism is proposed that is dependent on excision repair only and accounts for the slow decline seen with converted suppressor mutations in some instances and with de novo suppressor mutations at all times. The true MFD mechanism may consist of a physiologically dependent facilitated excision repair specifically for premutational residues located in the transcribed strand of the target DNa sequence (for O 6-ethylguanine in cells treated with ethyl methanesulfonate or pyrimidine- pyrimidine photoproducts after UV irradiation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.