Abstract
Type I polyhydroxyalkanoate (PHA) synthases, as represented by Ralstonia eutropha enzyme (PhaC(Re)), have narrow substrate specificity toward (R)-3-hydroxyacyl-coenzyme A with acyl chain length of C3-C5 to yield PHA polyesters. In this study, saturation point mutagenesis of a highly conserved alanine at position 510 (A510) in PhaC(Re) was carried out to investigate the effects on the polymerization activity and the substrate specificity for in vivo PHA biosynthesis in bacterial cells. A series of saturation mutants were first applied for poly[(R)-3-hydroxybutyrate] homopolymer synthesis in Escherichia coli and R. eutropha PHB(-)4 (PHA negative mutant) cells to assess the polymerization activity. All mutants showed quantitatively similar polymerization activities when R. eutropha PHB(-)4 was used for assay, whereas several mutants such as A510P showed low activities in E. coli. Further analysis has revealed that majority of mutants synthesize polyesters with higher molecular weights than the wild-type. In particular, substitution by acidic amino acids, A510D(E), led to remarkable increases in molecular weights. Subsequently, PHA copolymer synthesis from dodecanoate (C12 fatty acid) was examined. The copolymer compositions were varied depending on the mutants used. Significant increased fractions of long monomer units (C6 and C8) in PHA copolymers were observed for three mutants [A510M(Q,C)]. From these results, the mutations at this potion are beneficial to change the molecular weight of polyesters and the substrate specificity of PhaC(Re). Molecular weight distributions of PHA polymers synthesized by the wild-type enzyme (PhaC(Re)) and its mutants.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.