Abstract

Cephalosporins have been widely applied in clinical and veterinary settings and detected at increasing concentrations in water environments. They potentially induce high-level antibiotic resistance at environmental concentrations. This study characterized how typical wastewater bacteria developed heritable antibiotic resistance under exposure to different cephalosporins, including pharmacophore-resistance correlation, resistance mechanism, and occurrence of resistance-relevant mutations in different water environments. Wastewater-isolated E. coli JX1 was exposed to eight cephalosporins individually at 25 µg/L for 60 days. Multidrug resistance developed and diverse mutations arose in selected mutants, where a single mutation in ATP phosphoribosyltransferase encoding gene (hisG) resulted in up to 128-fold increase in resistance to meropenem. Molprint2D pharma RQSAR analysis revealed that hydrogen-bond acceptors and hydrophobic groups in the R1 and R2 substituents of cephalosporins contributed positively to antibiotic resistance. Some of these pharmacophores may persist during bio- or photo-degradation in the environment. hisG mutation confers a novel resistance mechanism by inhibiting fatty acid degradation, and its variants were more abundant in water-related E. coli (especially in the effluent of wastewater treatment plants) compared with those in non-water environments. These results suggest that specific degradation of particular pharmacophores in cephalosporins could be useful for controlling resistance development, and mutations in previously unreported resistance genes (e.g., hisG) can lead to overlooked antibiotic resistance risks in water environments.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call