Abstract
The high resolving power of the chromatographic separation of single- and double-stranded nucleic acids in 200 μm i.d. monolithic poly(styrene–divinylbenzene) capillary columns was utilized for mutation screening in polymerase chain reaction amplified polymorphic loci. Recognition of mutations is based on the separation of homo- and heteroduplex species by ion-pair reversed-phase high-performance liquid chromatography (IP-RP-HPLC) under partially denaturing conditions, resulting in characteristic peak patterns both for homozygous and heterozygous samples. Six different single nucleotide substitutions and combinations thereof were confidently identified in 413 bp amplicons from six heterozygous individuals each of which yielded a different unique chromatographic profile. Alternatively, mutations were identified in short, 62 bp PCR products upon their complete on-line denaturation at 75°C taking advantage of the ability of IP-RP-HPLC to resolve single-stranded nucleic acids of identical length that differ in a single nucleotide. Separations in monolithic capillary columns can be readily hyphenated to electrospray ionization mass spectrometry and promise increased sample throughput by operating in arrays similar to those already used in capillary electrophoresis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.