Abstract

Phenylalanine hydroxylase deficiency (PAHD) is an autosomal recessive disorder affecting phenylalanine (Phe) metabolism caused by mutations in the phenylalanine hydroxylase (PAH) gene. It has a complex phenotype with many variants and genotypes in various populations. This study sets out to analyze the screening results of children with phenylketonuria (PKU) in Yinchuan City and characterize the mutation variants of the PAH gene. Phenylketonuria screening results were retrospectively analyzed in 398,605 neonates (207,361 males and 191,244 females) born in different maternity hospitals in Yinchuan City between January 2017 and December 2021. Screening for genetic metabolic diseases was performed with parental consent at their own expense. A comprehensive diagnosis was performed by integrating tandem mass spectrometry (MS/MS) findings with clinical presentations. High-throughput sequencing (HTS) was used to detect genetic and metabolic disease-associated genes in children with PKU who were clinically diagnosed and voluntarily tested. The identified loci were validated through Sanger sequencing and parental verification. Among the screened newborns, 45 (11.3/100,000) PKU cases were diagnosed. In the 38 cases that underwent self-financed PAH sequencing, 56 mutations were detected in 76 chromosomes, with an overall detection rate of 73.7%. All patients harbored mutant genes, and the 56 mutations detected identified represented 14 variants, including 8 missense mutations, 2 splicing mutations, 2 nonsense mutations, and 2 silent mutations. The mutations were primarily distributed in exons 2, 3, 6, 7, 9, 11, and intron 4, with the highest frequency observed in exon 7 (25 [44.7%]), followed by exon 11 (15 [26.7%]). The most prevalent mutations were exon 7-p.R252W (10 [17.9%]) and exon 7-p.R261Q (8 [14.3%]). The PAH gene mutations in children with PKU in Yinchuan City are predominantly concentrated in exons 6, 7, and 11, with the highest detection rates observed for p.R252W and p.R261Q mutations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.