Abstract
Although a significant proportion of familial aggregation of breast cancer remains unexplained, many of the currently known breast cancer susceptibility genes, including BRCA1, BRCA2 and TP53, play a role in maintaining genome integrity by engaging in DNA repair. RAD51L1 is one of the five RAD51 paralogs involved in homologous recombination (HR) repair of DNA double-strand breaks (DSBs); it also interacts directly with p53. Deleterious mutations have been found in one RAD51 paralog, RAD51C (RAD51L2), in non-BRCA1/2 breast and ovarian cancer families, which suggests that all five paralogs are strong candidate breast cancer susceptibility genes. A genome-wide association study (GWAS) has already identified a single nucleotide polymorphism (SNP) deep within intron 10 of RAD51L1 as a risk locus for breast cancer. Based on its biological functions and association with RAD51C, there is reason to suggest that RAD51L1 (RAD51B/REC2) may also contain high risk mutations in the gene that give rise to multiple-case breast cancer families. In order to investigate this hypothesis, we have used high resolution melt (HRM) analysis to screen RAD51L1 for germline mutations in 188 non-BRCA1/2 multiple-case breast cancer families and 190 controls. We identified a total of seven variants: one synonymous, three intronic, and three previously identified SNPs, but no truncating or nonsense changes. Therefore, our results suggest that RAD51L1 is unlikely to represent a high-penetrance breast cancer susceptibility gene.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.