Abstract
The Nuclear receptor superfamily 5, group A, member 1 (NR5A1) gene encodes a nuclear receptor that regulates the transcription of genes involved in steroidogenesis, follicular development and female fertility. Little, however, is known about the relationship of this gene with reproductive performance in sheep. In this study, the transcription initiation site of Hu sheep NR5A1 gene was located 193 nucleotides (i.e., at −193 nt) before the translational start site (ATG). The core promoter region of the NR5A1 gene ranged from −696 nt to −298 nt, and a C>G mutation at −388 nt was detected in this region. Association analysis indicated ewes with the GG genotype had greater litter size at the second and third parity than those with the CC genotype (P < 0.05). The results from the luciferase assay provided evidence that the -388 G allele increased luciferase activity compared with that of the −388 C allele. Furthermore, the -388 C>G mutation lost a CpG site and gained a novel binding site for the transcription factor, SP1, and results from an overexpression experiment and methylation analysis indicated transcription factor SP1 and methylation of the -388 C>G mutation were both involved in alteration of NR5A1 transcription activity. Results of the present study revealed that the -388 C>G mutation lost a CpG site and promoted NR5A1 gene expression, which completely superimposed positive effects on NR5A1 gene transcription activity by transcription factor SP1, resulting in a fecundity increase in Hu sheep.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.